SET	A/B/C

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2022 PHYSICS (042)

CLASS: XII 19-11-2022 Max.Marks: 70

	MARKING SCHEME				
SET	QN. NO	VALUE POINTS	MARKS SPLIT UP		
A	1	С	1		
A	2	С	1		
A	3	В	1		
A	4	D	1		
A	5	В	1		
A	6	A	1		
A	7	В	1		
A	8	D	1		
A	9	A	1		
A	10	A	1		
A	11	A	1		
A	12	В	1		
A	13	A	1		
A	14	D	1		
A	15	(i)	1		
A	16	A	1		
A	17	С	1		
A	18	A	1		
A	19	Derivation of electric field strength at a distant point situated along the axis of an electric dipole figure Derivation	1/2 11/2		

		[Ans. Let V_1 and V_2 be the electric potential at P due	
		-9 +9	
		to -q and +q charges respectively then	
		$V_1 = \frac{-q}{4\pi \varepsilon_0(r+a)}$	
		$-4\pi \epsilon_0(r+a)$	
		$\& V_2 = \frac{q}{4\pi \varepsilon_0 (r - a)} \qquad \qquad \longleftarrow r \longrightarrow$	
		Resultant electric potential at P	
		STREET, AND STREET	
		$V = V_1 + V_2 = \frac{-q}{4\pi \varepsilon_0(r+a)} + \frac{q}{4\pi \varepsilon_0(r-a)} = \frac{q}{4\pi \varepsilon_0} \left[\frac{1}{(r-a)} - \frac{1}{(r+a)} \right] = \frac{q}{4\pi \varepsilon_0} \left[\frac{r+a-(r-a)}{(r^2-a^2)} \right]$	
		$\Rightarrow V = \frac{1}{4\pi \varepsilon_0} \frac{2qa}{(r^2 - a^2)}$	
		$\Rightarrow V = \frac{1}{4\pi \varepsilon_0} \frac{p}{(r^2 - a^2)} \qquad [\because p = 2qa]$	
		Obviously, if $r \gg a$, then	
		$V = \frac{1}{4\pi \varepsilon_0} \frac{p}{r^2}$	
		OR	
		Derivation of the electric field at a point due to a uniformly charged infinite plane	1/2
		sheet	1½
		Figure-	
A	20	Derivation Definition of potential	1/2
Λ	20	S.I. Unit: volt	1/2
		$U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{12}} + \frac{1}{4\pi\epsilon_0} \frac{q_1 q_3}{r_{13}} + \frac{1}{4\pi\epsilon_0} \frac{q_2 q_3}{r_{23}}$	1
A	21	Relation of drift velocity with relaxation time	
11	21	Figure	1/2
		Derivation	11/2
		Let a potential difference V is applied across the ends of a conductor, then each free electron will experience a force	
		$\overrightarrow{F} = -e \; \overrightarrow{E} \Longrightarrow \overrightarrow{a} = -\frac{e \; \overrightarrow{E}}{m}$	
		Average of all random velocities under this acceleration is the drift velocity	
		$\overrightarrow{v_d} = \frac{\overrightarrow{v_1} + \overrightarrow{v_2} + \dots + \overrightarrow{v_N}}{N} = \frac{(\overrightarrow{u_1} + \overrightarrow{a} \cdot \tau_1) + (\overrightarrow{u_2} + \overrightarrow{a} \cdot \tau_2) + \dots + (\overrightarrow{u_N} + \overrightarrow{a} \cdot \tau_N)}{N}$	
		$\Rightarrow \overrightarrow{v_d} = \frac{\overrightarrow{u_1} + \overrightarrow{u_2} + \dots + \overrightarrow{u_N}}{N} + \overrightarrow{a} \left(\frac{\tau_1 + \tau_2 + \dots + \tau_N}{N} \right)$	
		$\Rightarrow \overrightarrow{v_d} = 0 + \overrightarrow{a} \ \tau = \overrightarrow{a} \ \tau$	
		$\Rightarrow \qquad \overrightarrow{v_d} = -\frac{e \overrightarrow{E}}{m} \tau$	
		OR	$\frac{1}{2} + \frac{1}{2}$
		Kirchhoff' first law + justification- (Statement + this law holds law of	
		conservation of charge)	1/2 +1/2
		Kirchhoff' second law + justification- (Statement + this law holds law of	
		conservation of energy)	

Λ.	22		
A	22	$radius \ r = \frac{mv}{q \ B} = \frac{p}{qB}$	1/2
		$radius r \propto \frac{1}{q}$	1/2
		$\frac{r_1}{r_2} = \frac{q_2}{q_1} = \frac{2}{1}$	1
A	23	 (i) a – diamagnetic substance b – ferromagnetic substance (ii) for diamagnetic substance susceptibility is negative and for ferromagnetic substance its positive and high 	1/2 1/2 1/2 + 1/2
A	24	x_{c}	1+1
A	25	(a) The resonance frequency is given by $\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5 \times 80 \times 10^{-6}}} = 50 \text{rad/s}$ The resonant frquency is 50 rad/s. (b) $current I = \frac{V}{R} = \frac{240}{40} = 6 A$	$\frac{1}{2} + \frac{1}{2}$
A	26	SECTION C Ray diagram of reflecting telescope (without direction of ray, reduce ½ mark) Any two advantages	2
A	27	(i) The charge Q = CV, V = same, C = increases; there, charge on plates increases. (ii)	1/2 +1/2
		As electric field E = $\frac{V}{d}$, V = constant and d = constant; therefore, electric field strength remains the same. (iii) The capacitance of capacitor increases as K > 1.	1/2 +1/2
A	28	Gauss theorem to obtain the expression for the electric field at a point due to an infinitely long thin, uniformly charged straight wire of linear charge density λ C/m.	

		[Ann. Change analoged by Coursian symform $a = 11$	Eia
		[Ans. Charge enclosed by Gaussian surface, $q = \lambda l$ At the part I and II of Gaussian surface \vec{E} and \hat{n}	Fig- 1 mark
		are 1, so flux through surfaces I and II is zero.	1 111a1K
		By Gauss's law, $\oint \overrightarrow{E} \cdot \overrightarrow{ds} = \frac{q}{\epsilon_0}$	
		$\Rightarrow \oint Eds \cos 0 = \frac{q}{\varepsilon_0}$	Derivation
		$\Rightarrow \qquad E \oint ds = \frac{q}{\varepsilon_0}$	
			2 marks
		$E(2\pi rl) = \frac{\lambda l}{\epsilon_0}$ Uniformly 1 Uniformly 2 Uniformly 3	
		$\Rightarrow \qquad E = \frac{\lambda}{2\pi\varepsilon_0 r}$	
A	29	(a) Microwave	1+1+1
		(b) IR	
		(c) X ray OR	
		oscillating charge produce electromagnetic wave- explanation	½ +1
		em wave propagating along z direction – with proper marking of of E and B	
		Y	
		ATT JENTE	
		2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		X B E B	
		Direction of propagation	1 ½
		If any representation in diagram is missing, reduce ½ marks	
A	30	(a)expression for resistivity of a conductor in terms of number density of free	
		electrons and relaxation time	
		VIA.	
		On the basis of electron drift, derive an expression for resistivity of a conductor in terms of number density of free electrons and relaxation time.	
		Let a potential difference V is applied across the ends of a conductor as shown.	
		Electric field produced, $E = \frac{V}{l}$	
		$\Rightarrow v_d = \frac{eE}{ml} \tau = \frac{eV}{ml} \tau$	1/2
		$\Rightarrow I = neAv_d = neA\left(\frac{eV}{ml}\tau\right) = \frac{ne^2\tau}{m}\left(\frac{A}{l}\right)V$	1/
		$\Rightarrow \frac{V}{I} = \frac{m}{ne^2 \tau} \left(\frac{l}{A}\right) \qquad(1)$	1/2
		If the physical conditions of conductor such as temperature etc. remains constant then	
		413	1/2
		$\frac{m}{ne^{2}\tau} \left(\frac{l}{A}\right) = constant = R \qquad(2)$ $\Rightarrow \text{ from (1) } \frac{V}{I} = R \qquad \Rightarrow \qquad V = IR \qquad , \text{Now, } R = \frac{\rho l}{A} \qquad \Rightarrow \text{ from (2) } \rho = \frac{m}{ne^{2}\tau}$	1/2
		I A ne-T	
		(b) factors offacting registivity of a conductor, any two	$\frac{1}{2} + \frac{1}{2}$
		(b) factors affecting resistivity of a conductor - any two	/2 /2
		OB	
		OR	

	1		
		$ \begin{array}{c c} & 2 \Omega \\ & 1 \\ & 3 \Omega \end{array} $ $ \begin{array}{c c} & 1 \\ & 3 \Omega \end{array} $ Note the interest of singuith.	
		Net resistance of circuit $R_{eq} = \frac{2 \times 3}{2 + 3} + 2 \cdot 8 = 1 \cdot 2 + 2 \cdot 8 = 4 \Omega$	1/2
		2.3	
		Net emf, E = 6V	
		Current in circuit,	1
		$I = \frac{E}{R_{eq}} = \frac{6}{4} = 1.5\mathbf{A}$	1
		Potential difference across parallel combination of 2Ω and 3Ω resistances.	1/2
		V' = IR' =1.5 x1.2 =1.8V	
		Current in $R_1 = 2\Omega$ resistance	
		$I_1 = V'/R_1 = 1.8/2 = 0.9A$	1
A		SECTION D	
		(a) figure of step up transformer	1/2
	31	Principle	1/ ₂ 2
	31	Working of transformer	2
		(b) Any two energy loss in transformer	1/2 +1/2
		(c) No. Energy is conserved with the reason	1/2 +1/2
		OB	
		OR (a) Diagram of ac generator	1
		Principle Principle	1
		(b) Derivation of expression	2
		$e = e_0 \sin \omega t$	\frac{2}{1/2} + \frac{1}{2}
		(c) No, MCG can't measure ac with Reason	
A	32	(a) ray diagram – astronomical telescope in normal adjust	2
		Magnifying power definition	1
		(b) 0.5 D (large focal length) and 4 D or 10 D (small focal length)	1+1
		OR Refraction through curved surface – ray diagram	1
		Derivation of proper relation	2
		Sign convention (if sign convention used in ray diagram, add 1 mark with Ray	
		diagram)	1
A	22	Focal length of convex lens increases when immersed in water	1
Α	33	(a) Biot savart law statement and mathematical expression (b) Derivation of magnetic field due to current carrying circular coil along the axis.	2
1		(b) Derivation of magnetic field due to current carrying circular coil along the axis	

		Diagram	1
		Derivation	2
		OR	
		(a) Expression for force on current carrying conductor placed in magnetic field –	
		Diagram	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
		Derivation The force acting on the current carrying wire in uniform magnetic field	2
		F = Bil $\sin \theta$	
			1/2
		$F = Bil \qquad (\because \theta = 90^{\circ})$	72
		Weight of the wire $w = mg = 0.2 \times 9.8N$	1/2
		In the position of suspension	/2
		Bil = mg	1/2
		$B = \frac{mg}{il} = \frac{0.2 \times 9.8}{2 \times 15} = 0.65T$	1/2
A	34	(i) Statement faraday's laws	
		First law	1/2
		Second law	1/2
		(ii) weber, scalar	1/2 +1/2
		(iii) clockwise	2
		OR	
		$e = -\frac{d\phi}{dt}$	1
			$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
		$e = 1.6 \times 10^{-3} \text{ V}$	1
A	35	(i) Two Conditions for TIR	1/2 +1/2
		(ii) Two uses of optical fibre	1/2 +1/2
		(iii) definition of critical angle and relation between i _c and n ₂₁	1 +1
		OR	
		From $\sin C = \frac{1}{1} = 1$	1 +1
		From $\sin C = \frac{1}{\mu} = \frac{1}{\sqrt{2}}, C = 45^{\circ}$	
	1		
В	1	A	
D	2		
В	2	C	
В	3	A	
"			
В	4	A	
	-		
В	5	С	
В	6	D	
В	7	A	
В	8	В	
В	9	A	

В	10	A	
В	11	A	
В	12	В	
В	13	A	
В	14	D	
В	15	(i)	
В	16	A	
В	17	С	
В	18	A	
В	19	(a) equipotential surface in z direction -diagram showing equal spacing between two consecutive equipotential surface otherwise reduce ½ mark (b) two different equipotential surface have different electric potential, so if they intersect then the point of intersection will have two different potentials at the same point which is not possible.	1/2 +1/2
В	20	(a) An electrostatic field line is a continuous curve because a charge experiences a continuous force when traced in an electrostatic field. The field line cannot have sudden breaks because the charge moves continuously and does not jump from one point to the other. OR Since $x = 1m$ $ \varphi_L = -50 \times 1 \times 25 \times 10^{-4} $ $ = -0.125 \text{ Nm}^2\text{C}^{-1} $ Flux through the right surface, $ \varphi_R = E S $ Since $x = 2m$, $ \varphi_R = 50 \times 2 \times S $ $ = 50 \times 2 \times 25 \times 10^{-4} $ $ = 2500 \times 10^{-4} $ $ = 0.250 \text{ Nm}^2\text{C}^{-1} $ Now, flux through the cylinder $ \varphi_{Acw} = \varphi_R + \varphi_L $ $ = 0.250 - 0.125 $ $ = 0.125 \text{ Nm}^2\text{C}^{-1} $	1 1 1/2 1/2 1

D	21	Deletion I. aE A	
В	21	Relation-I = nE A v _d Derivation (If diagram is given give ½ mark)	2
В	22	Magnetic field induction at O due to current loop 1 is $\mu_0 I R^2$	1/2
		$B_1 = \frac{\mu_0 I R^2}{2(x^2 + R^2)^{3/2}},$	/2
		acting towards left. Magnetic field induction at O due to current loop 2 is	
		$B_2 = \frac{\mu_0 I R^2}{2(x^2 + R^2)^{3/2}}$	1/2
		$2(x^2 + R^2)^{3/2}$ acting vertically upwards.	, 2
		$B = \sqrt{B_1^2 + B_2^2} = \sqrt{2}B_1 \ (\because B_1 = B_2)$	
		$=\sqrt{2}\times\frac{\mu_0 T R}{2(x^2+R^2)^{3/2}}$	
		Resultant magnetic field induction at O will be $B = \sqrt{B_1^2 + B_2^2} = \sqrt{2}B_1 \ (\because B_1 = B_2)$ $= \sqrt{2} \times \frac{\mu_0 I R^2}{2(x^2 + R^2)^{3/2}}$ $= \frac{\mu_0 I R^2}{\sqrt{x^2 + R^2}^{3/2}}$	1/2
		$\sqrt{x^2 + R^2}^{3/2}$	72
		Direction – 45 ⁰	1/
В	23	(i) (a) dia magnetic (b) ferromagnetic	1/ ₂ 1/ ₂ +1/ ₂
		(ii) negative susceptibility for diamagnetic and high and positive for ferromagnetic	1/2 +1/2
В	24	substance (a) Definition of self-inductance in terms of induced emf	1
B	24	(a) Definition of self-inductance in terms of induced enii	1
		(b) $e = L \frac{di}{dt}$	
			1/2
		$L = \frac{e}{\frac{di}{dt}}$	
			1/
		$=\frac{200}{\frac{5}{9}=4H}$	1/2
		0.1 Hence the self inductance of the coil is 4H.	
		OR	
		Derivation for self-inductance of long solenoid Diagram	
		Derivation	1/2
			1½
В	25	1 / 1	1+1
		$\ddot{\mathbf{x}}_{\mathrm{L}}$ $\ddot{\mathbf{x}}_{\mathrm{c}}$	
		(a) (b)	
В	26	the expression for the electric field at a point due to an infinitely long thin,	
		uniformly charged straight wire of linear charge density λ C/m	

		[Ans. Charge enclosed by Gaussian surface, $q = \lambda l$	
		At the part I and II of Gaussian surface \vec{E} and \hat{n}	1 for
		are \perp , so flux through surfaces I and II is zero.	
		The state of the s	diagram
		By Gauss's law, $\oint \overrightarrow{E} \cdot \overrightarrow{ds} = \frac{q}{\epsilon_0}$	2for
		$\Rightarrow \oint Eds \cos 0 = \frac{q}{\epsilon_0}$	derivation
		$\Rightarrow \qquad E \oint ds = \frac{q}{\varepsilon_0}$ $\Rightarrow \qquad E(2\pi r l) = \frac{\lambda l}{\varepsilon_0}$ Carrier Carr	
		$\Rightarrow E(2\pi rl) = \frac{\lambda l}{l}$	
		$E = \frac{\lambda}{2\pi\epsilon_0 r}$	
		2.00	4
В	27	(a) the capacitance increases as the dielectric constant K>1.	1
		(b) Electric field $E=V/d$, As V decreases and d remains the same, electric field	1
		also decreases.	1
		(c) Energy stored in a capacitor $U=Q^2/2C$, As Q is constant and C increases, U	1
		decreases.	
В	28	(a) expression for resistivity of a conductor in terms of number density of free	
		electrons and relaxation time	
		On the basis of electron drift, derive an expression for resistivity of a conductor in terms of number density of free electrons and relaxation time.	
		Let a potential difference V is applied across the ends of a conductor as shown.	
		Electric field produced, $E = \frac{V}{T}$	17
		$\Rightarrow v_d = \frac{eE}{ml} \tau = \frac{eV}{ml} \tau$	1/2
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/
		$\Rightarrow I = neAv_d = neA\left(\frac{eV}{ml}\tau\right) = \frac{ne^2\tau}{m}\left(\frac{A}{l}\right)V$	1/2
		$\Rightarrow \frac{V}{I} = \frac{m}{ne^2\tau} \left(\frac{l}{A}\right) \qquad(1)$	
		If the physical conditions of conductor such as temperature etc. remains constant then	1/-
		$\frac{m}{ne^2\tau}\left(\frac{l}{4}\right) = constant = R$ (2)	1/ ₂ 1/ ₂
		$\Rightarrow \text{ from (1) } \frac{V}{I} = R \qquad \Rightarrow \qquad V = IR \qquad , \text{Now, } R = \frac{\rho l}{A} \Rightarrow \text{ from (2) } \rho = \frac{m}{ne^2 \tau}$	72
			1/2 +1/2
		(b) Factors on which resistivity depends OR	
		Effective resistance, $R_{12} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$	
		$R_{12} = 1.2\Omega$	
		resistance, R_{12} is in series 2.8Ω	
		Total resistance = $1.2 + 2.8 = 4.0\Omega$	1/2
		$Current, I = \frac{6}{4} = 1.5A$	1
		Potential difference, $AB = 1.5 \times 1.2 = 1.8V$	1/2
		Current through $2\Omega = \frac{1.8}{2} = 0.9$ A.	1
В	29	(a) microwave (b) IR (c) X ray	1+1+1
		OR	
		(a) oscillating charge produces em wave - explanation	½ + 1
		(b) sketch of em wave propagating in + x direction	1 1/2
		If any representation in diagram is missing, reduce ½ marks	
В	30	Refractive index of Prism	
		Ray diagram	1
		Derivation	2
В	31	(a) Biot savart law statement and mathematical expression	1+1
		(b) Derivation of magnetic field due to current carrying circular coil along the axis	
		Diagram	1
		Derivation	2

		OR	
		(a) expression for force on current carrying conductor- derivation and figure	
		Diagram	1
		Derivation	$\frac{1}{2}$
		The force acting on the current carrying wire in uniform magnetic field	_
		$F = Bil \sin \theta$	
		$F = Bil$ $(\cdot \cdot \theta = 90^{\circ})$	1/2
		Weight of the wire $w = mg = 0.2 \times 9.8N$	1/2
		In the position of suspension	
		Bil = mg	1/2
		$B = \frac{mg}{i1} = \frac{0.2 \times 9.8}{2 \times 15} = 0.65T$	1/2
		$B = \frac{1}{il} = \frac{2 \times 15}{2 \times 15} = 0.051$	
В	32	(a) figure of step up transformer	1/2
		Principle	1/2
		Working of transformer	2
		(b) Any two energy loss in transformer	1/2 +1/2
		(c) No. Energy is conserved with the reason	1/2 +1/2
		OR	
		(a) Diagram of ac generator	
		Principle	1
		(b) Derivation of expression	
		$e = e_0 \sin \omega t$	$\begin{vmatrix} 2 \\ \frac{1}{2} + \frac{1}{2} \end{vmatrix}$
		(c) No, MCG can't measure ac with Reason	
В	33	(a) ray diagram – astronomical telescope in normal adjust	2
		Magnifying power definition	
		(b) (b) 0.5 D (large focal length) and 4 D or 10 D (small focal length)	1 +1
		OR Defination through angued surface, may diagram	1
		Refraction through curved surface – ray diagram Derivation of proper relation	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
		Sign convention (if sign convention used in ray diagram, add 1 mark with Ray	1
		diagram)	1
		Focal length of convex lens increases when immersed in water	1
В	34	(i) Statement faraday's laws	
		First law	1/2
		Second law	1/2
		(ii) weber, scalar	1/2 +1/2
		(iii) clockwise	2
		OR	
		$e = -\frac{d\phi}{d\phi}$	
		dt	1
		$e = 1.6 \times 10^{-3} \text{ V}$	1
В	35	(i) Two Conditions for TIR	1/2 +1/2
		(ii) Two uses of optical fibre	1/2 +1/2
		(iii) definition of critical angle and relation between i _c and n ₂₁	1 +1
		OR	
		5 sin C 1 1 C 45°	1 +1
		From $\sin C = \frac{1}{\mu} = \frac{1}{\sqrt{2}}, C = 45^{\circ}$	

С	1	A	
С	2	С	
С	3	A	
С	4	В	
С	5	A	
С	6	A	
С	7	В	
С	8	В	
С	9	A	
С	10	A	
С	11	D	
С	12	D	
С	13	A	
С	14	A	
С	15	(i)	
С	16	A	
С	17	С	
С	18	A	
С	19	$radius \ r = \frac{mv}{q \ B} = \frac{p}{qB}$	1/2
		$radius r \propto \frac{1}{q}$	1/2
		$\frac{r_1}{r_2} = \frac{q_2}{q_1} = \frac{2}{1}$	1

С	20	(b) An electrostatic field line is a continuous curve because a charge experiences a continuous force when traced in an electrostatic field. The field line cannot have sudden breaks because the charge moves continuously and does not jump from one point to the other.	1
		OR $Since x = 1m$ $\phi_L = -50 \times 1 \times 25 \times 10^{-4}$ $= -1250 \times 10^{-4}$ $= -0.125 \text{ Nm}^2\text{C}^{-1}$ $F \text{ lux through the right surface,}$ $\phi_R = E S $ $Since x = 2m,$ $\phi_R = 50 \times 2 \times s $ $= 50 \times 2 \times 25 \times 10^{-4}$	1/2
		$= 2500 \times 10^{-4}$ $= 0.250 \text{ Nm}^2\text{C}^{-1}$ Now, flux through the cylinder $\phi_{\text{Ace}} = \phi_{\text{R}} + \phi_{\text{L}}$ $= 0.250 - 0.125$ $= 0.125 \text{ Nm}^2\text{C}^{-1}$	1/2
С	21	(i) (a) dia magnetic (b) ferromagnetic (ii) negative susceptibility for diamagnetic and high and positive for ferromagnetic substance	1/2 + 1/2
С	22	(a) equipotential surface in z direction -diagram showing equal spacing between two consecutive equipotential surface otherwise reduce ½ mark (b) two different equipotential surface have different electric potential, so if they intersect then the point of intersection will have two different potentials at the same point which is not possible.	1/2 +1/2
С	23	$ \uparrow_{X_L} \qquad \uparrow_{X_C} \qquad \downarrow_{X_C} \qquad \downarrow_{$	1+1
С	24	(a) definition of self-inductance in terms of induced emf	1

		$e = L \frac{di}{dt}$	1/2
		$L = \frac{e}{\frac{di}{dt}}$ 200	
		$=\frac{5}{0.1}=4H$	
		Hence the self inductance of the coil is 4H.	
		OR	1/2
		Derivation for self-inductance of long solenoid	
		Diagram Derivation	1/2
		Benvation	1½
С	25	$I = nE A v_d$	2
		Derivation (If diagram is given give ½ mark)	
C	26	(a) microwave (b) IR (c) X ray	1+1+1
		OR	$\frac{1}{2} + 1$
		(a) oscillating charge produces em wave - explanation(b) sketch of em wave propagating in + x direction	$\begin{vmatrix} 72 + 1 \\ 1 \frac{1}{2} \end{vmatrix}$
		If any representation in diagram is missing, reduce ½ marks	1 /2
С	27	(a) Remain same because source of charge disconnected	1
		(b) Electric field $E=V/d$, As V decreases and d remains the same, electric field	1
		also decreases.	1
		(c) the capacitance increases as the dielectric constant K>1.	1
С	28	Reflecting telescope – diagram	2
С	29	Any two Advantages the expression for the electric field at a point due to an infinitely long thin,	72 +72
		uniformly charged straight wire of linear charge density λ C/m	
		[Ans. Charge enclosed by Gaussian surface, $q = \lambda l$	
		At the part I and II of Gaussian surface \vec{E} and \hat{n} are \bot , so flux through surfaces I and II is zero.	1 for
		By Gauss's law, $\oint \vec{E} \cdot \vec{ds} = \frac{q}{\epsilon_0}$	diagram
		$\Rightarrow \oint Eds \cos 0 = \frac{q}{\epsilon_0}$	2 for
		$\Rightarrow \qquad E \oint ds = \frac{q}{q}$	derivation
		$E \oint ds = \frac{q}{\epsilon_0}$ $E(2\pi r l) = \frac{\lambda l}{\epsilon_0}$	derivation
		$E = rac{\lambda}{2\piarepsilon_0 r}$	
С	30	a) expression for resistivity of a conductor in terms of number density of free	
		electrons and relaxation time	
		On the basis of electron drift, derive an expression for resistivity of a conductor in terms of number density of free	
		electrons and relaxation time. Let a potential difference V is applied across the ends of a conductor as shown.	
		Electric field produced, $E = \frac{V}{I}$	1/2
		$\Rightarrow v_d = \frac{eE}{ml} \tau = \frac{eV}{ml} \tau$	72
		$\Rightarrow I = neAv_d = neA\left(\frac{eV}{ml}\tau\right) = \frac{ne^2\tau}{m}\left(\frac{A}{l}\right)V$	1/2
		$\Rightarrow \frac{V}{I} = \frac{m}{ne^2\tau} \left(\frac{l}{A}\right) \qquad \cdots (1)$	
		If the physical conditions of conductor such as temperature etc. remains constant then	1/2
		$\frac{m}{ne^2\tau} \left(\frac{l}{A}\right) = constant = R \qquad(2)$	1/2
		$\Rightarrow \text{ from (1) } \frac{V}{I} = R \qquad \Rightarrow \qquad V = IR \qquad , \text{Now, } R = \frac{\rho I}{A} \Rightarrow \text{ from (2)} \rho = \frac{m}{ne^2\tau}$	
		(b) Factors on which resistivity depends	1/2 +1/2

Page **13** of **15**

		OR	
		Effective resistance, $R_{12} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$	
		$R_{12} = 1.2\Omega$	
		resistance, R_{12} is in series 2.8Ω Total resistance = $1.2 + 2.8 = 4.0\Omega$	1/2
			1
		Current, $I = \frac{6}{4} = 1.5A$	1/2
		Potential difference, AB = $1.5 \times 1.2 = 1.8$ V	1
		Current through $2\Omega = \frac{1.8}{2} = 0.9$ A.	
С	31	(a) ray diagram – astronomical telescope in normal adjust	2
		Magnifying power definition	1
		(b) 0.5 D (large focal length) and 4 D or 10 D (small focal length)	1 +1
		OR	
		Refraction through curved surface – ray diagram	1
		Derivation of proper relation	2
		Sign convention (if sign convention used in ray diagram, add 1 mark with Ray	1
		diagram)	
		Focal length of convex lens increases when immersed in water	1
C	32	(a) figure of step up transformer	1/2
		Principle	1/2
		Working of transformer	2
		(b) Any two energy loss in transformer	1/2 +1/2
		(c) No. Energy is conserved with the reason	1/2 +1/2
		OR	
		(a) Diagram of ac generator	1
		Principle	1
		(b) Derivation of expression	
		$e = e_0 \sin \omega t$	2
		(c) No, MCG can't measure ac with Reason	1/2 +1/2
С	33	(a) Biot savart law statement and mathematical expression	+1
		(b) Derivation of magnetic field due to current carrying circular coil along the axis	
		Diagram	1
		Derivation	2
		OR	
		(a) expression for force on current carrying conductor- derivation and figure	
		Diagram	1
		Derivation	2
		(b)	
		The force acting on the current carrying wire in uniform magnetic field	
		$F = Bil \sin \theta$	
		$F = Bil$ $(\cdot, \theta = 90^\circ)$	1/2
		Weight of the wire $w = mg = 0.2 \times 9.8N$	1/2
		In the position of suspension Bil = mg	
			1/2
		$B = \frac{mg}{il} = \frac{0.2 \times 9.8}{2 \times 15} = 0.65T$	1/2
<u> </u>	24	(') Shahaman A Sama Landa Landa	
C	34	(i) Statement faraday's laws	1/
		First law	1/2
		Second law	1/2
		(ii) weber, scalar	1/2 +1/2

		(iii) clockwise	2
		$e = -\frac{d\phi}{dt}$ OR	1
		$e = 1.6 \times 10^{-3} \text{ V}$	1
С	35	(i) Two Conditions for TIR	1/2 +1/2
		(ii) Two uses of optical fibre	1/2 +1/2
		(iii) definition of critical angle and relation between i _c and n ₂₁	1 +1
		OR	
		From $\sin C = \frac{1}{\mu} = \frac{1}{\sqrt{2}}$, $C = 45^\circ$	1 +1