SET	$\mathbf{A} / \mathbf{B} / \mathbf{C}$

INDIAN SCHOOL MUSCAT

 HALF YEARLY EXAMINATION 2022 PHYSICS (042)| MARKING SCHEME | | | |
| :---: | :---: | :---: | :---: |
| SET | $\begin{aligned} & \text { QN. } \\ & \text { NO } \end{aligned}$ | VALUE POINTS | MARKS SPLIT UP |
| A | 1 | C | 1 |
| A | 2 | C | 1 |
| A | 3 | B | 1 |
| A | 4 | D | 1 |
| A | 5 | B | 1 |
| A | 6 | A | 1 |
| A | 7 | B | 1 |
| A | 8 | D | 1 |
| A | 9 | A | 1 |
| A | 10 | A | 1 |
| A | 11 | A | 1 |
| A | 12 | B | 1 |
| A | 13 | A | 1 |
| A | 14 | D | 1 |
| A | 15 | (i) | 1 |
| A | 16 | A | 1 |
| A | 17 | C | 1 |
| A | 18 | A | 1 |
| A | 19 | Derivation of electric field strength at a distant point situated along the axis of an electric dipole
 figure
 Derivation | $1 / 2$ $11 / 2$ |

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
[Ans. Let \(V_{1}\) and \(V_{2}\) be the electric potential at \(P\) due to \(-q\) and \(+q\) charges respectively then
\[
\begin{aligned}
V_{1} \& =\frac{-q}{4 \pi \varepsilon_{0}(r+a)} \\
\& \quad V_{2} \& =\frac{q}{4 \pi \varepsilon_{0}(r-a)}
\end{aligned}
\] \\
Resultant electric potential at \(P\)
\[
V=V_{1}+V_{2}=\frac{-q}{4 \pi \varepsilon_{0}(r+a)}+\frac{q}{4 \pi \varepsilon_{0}(r-a)}=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{(r-a)}-\frac{1}{(r+a)}\right]=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{r+a-(r-a)}{\left(r^{2}-a^{2}\right)}\right]
\]
\[
\begin{aligned}
\& \Rightarrow \quad V=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q a}{\left(r^{2}-a^{2}\right)} \\
\& \Rightarrow V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{\left(r^{2}-a^{2}\right)} \quad[\because p=2 q a]
\end{aligned}
\] \\
Obviously, if \(r \gg a\), then
\[
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{2}}
\] \\
OR \\
Derivation of the electric field at a point due to a uniformly charged infinite plane sheet \\
Figure- \\
Derivation
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 11 / 2
\end{aligned}
\] \\
\hline A \& 20 \& \begin{tabular}{l}
Definition of potential \\
S.I. Unit : volt
\[
\mathrm{U}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{3}}{\mathrm{r}_{13}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{2} \mathrm{q}_{3}}{\mathrm{r}_{23}}
\]
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2 \\
\& 1
\end{aligned}
\] \\
\hline A \& 21 \& \begin{tabular}{l}
Relation of drift velocity with relaxation time \\
Figure \\
Derivation \\
Let a potential difference \(V\) is applied across the ends of a conductor, then each free electron will experience a force
\[
\vec{F}=-e \vec{E} \quad \Rightarrow \quad \vec{a}=-\frac{e \vec{E}}{m}
\] \\
Average of all random velocities under this acceleration is the drift velocity \\
OR \\
Kirchhoff' first law + justification- (Statement + this law holds law of conservation of charge) \\
Kirchhoff' second law + justification- (Statement + this law holds law of conservation of energy)
\end{tabular} \& \(1 / 2\)
\(11 / 2\)

$1 / 2+1 / 2$
$1 / 2+1 / 2$

\hline
\end{tabular}

A	22	$\begin{aligned} & \text { radius } r=\frac{m v}{q B}=\frac{p}{q B} \\ & \text { radius } r \propto \frac{1}{q} \\ & \frac{r_{1}}{r_{2}}=\frac{q_{2}}{q_{1}}=\frac{2}{1} \end{aligned}$	$1 / 2$ $1 / 2$ 1
A	23	(i) a - diamagnetic substance b-ferromagnetic substance (ii) for diamagnetic substance susceptibility is negative and for ferromagnetic substance its positive and high	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \\ 1 / 2+1 / 2 \end{array}$
A	24		1+1
A	25	(a) The resonance frequency is given by $\omega=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{5 \times 80 \times 10^{-6}}}=50 \mathrm{rad} / \mathrm{s}$ The resonant frquency is $50 \mathrm{rad} / \mathrm{s}$. (b) current $I=\frac{V}{R}=\frac{240}{40}=6 \mathrm{~A}$	$1 / 2+1 / 2$ $1 / 2+1 / 2$
A	26	SECTION C Ray diagram of reflecting telescope (without direction of ray, reduce $1 / 2 \mathrm{mark}$) Any two advantages (i)	$\begin{aligned} & 2 \\ & 1 / 2+1 / 2 \end{aligned}$
A	27	(i) The charge $\mathrm{Q}=\mathrm{CV}, \mathrm{V}=$ same, $\mathrm{C}=$ increases; there, charge on plates increases. (ii) As electric field $\mathrm{E}=\frac{V}{d}, V=$ constant and $\mathrm{d}=$ constant; therefore, electric field strength remains the same. (iii) The capacitance of capacitor increases as $K>1$.	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
A	28	Gauss theorem to obtain the expression for the electric field at a point due to an infinitely long thin, uniformly charged straight wire of linear charge density λ C/m.	

		[Ans. Charge enclosed by Gaussian surface, $q=\lambda l$ At the part I and II of Gaussian surface \vec{E} and \hat{n} are \perp, so flux through surfaces I and II is zero. By Gauss's law, $\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}$ $\begin{array}{lr} \Rightarrow & \oint E d s \cos 0=\frac{q}{\varepsilon_{0}} \\ \Rightarrow & E \oint d s=\frac{q}{\varepsilon_{0}} \\ \Rightarrow & E(2 \pi r l)=\frac{\lambda l}{\epsilon_{0}} \\ \Rightarrow & E=\frac{\lambda}{2 \pi \varepsilon_{0} r} \end{array}$	Fig- 1 mark Derivation 2 marks
A	29	(a) Microwave (b) IR (c) X ray OR oscillating charge produce electromagnetic wave- explanation em wave propagating along z direction - with proper marking of of E and B If any representation in diagram is missing, reduce $1 / 2$ marks	$\begin{aligned} & 1+1+1 \\ & 1 / 2+1 \end{aligned}$
A	30	(a)expression for resistivity of a conductor in terms of number density of free electrons and relaxation time On the basis of electron drift, derive an expression for resistivity of a conductor in terms of number density of free electrons and relaxation time. Let a potential difference V is applied across the ends of a conductor as shown. Electric field produced, $E=\frac{V}{l}$ $\begin{align*} & \Rightarrow \quad v_{d}=\frac{e E}{m l} \tau=\frac{e V}{m l} \tau \\ & \Rightarrow \quad \mathrm{I}=n e A v_{d}=n e A\left(\frac{e V}{m l} \tau\right)=\frac{n e^{2} \tau}{m}\left(\frac{A}{l}\right) \mathrm{V} \\ & \Rightarrow \quad \frac{V}{l}=\frac{m}{n e^{2} \tau}\left(\frac{l}{A}\right) \tag{1} \end{align*}$ If the physical conditions of conductor such as temperature etc. remains constant then $\begin{align*} & \frac{m}{n e^{2} \tau}\left(\frac{l}{A}\right)=\text { constant }=R \quad \cdots-\cdots--(2) \tag{2}\\ \Rightarrow & \text { from (1) } \frac{V}{I}=R \quad \Rightarrow \quad V=I R \quad, \quad \text { Now, } R=\frac{\rho l}{A} \quad \Rightarrow \text { from (2) } \rho=\frac{m}{n e^{2} \tau} \end{align*}$ (b) factors affecting resistivity of a conductor - any two	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$

		Net resistance of circuit $R_{e q}=\frac{2 \times 3}{2+3}+2 \cdot 8=1 \cdot 2+2 \cdot 8=4 \Omega$ Net emf, $\mathrm{E}=6 \mathrm{~V}$ Current in circuit, $I=\frac{E}{R_{e q}}=\frac{6}{4}=1 \cdot 5 \mathrm{~A}$ Potential difference across parallel combination of 2Ω and 3Ω resistances. $V^{\prime}=\mathbb{R}^{\prime}=1.5 \times 1.2=1.8 \mathrm{~V}$ Current in $\mathrm{R}_{1}=2 \Omega$ resistance $\mathrm{I}_{1}=\mathrm{V}^{\prime} / \mathrm{R}_{1}=1.8 / 2=0.9 \mathrm{~A}$	$1 / 2$ 1 $1 / 2$ 1
A	31	SECTION D (a) figure of step up transformer Principle Working of transformer (b) Any two energy loss in transformer (c) No. Energy is conserved with the reason OR (a) Diagram of ac generator Principle (b) Derivation of expression $e=e_{0} \sin \omega t$ (c) No, MCG can't measure ac with Reason	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 2 \\ & \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & \\ & 1 \\ & 1 \\ & 2 \\ & 1 / 2+1 / 2 \end{aligned}$
A	32	(a) ray diagram - astronomical telescope in normal adjust Magnifying power definition (b) 0.5 D (large focal length) and 4 D or 10 D (small focal length) OR Refraction through curved surface - ray diagram Derivation of proper relation Sign convention (if sign convention used in ray diagram, add 1 mark with Ray diagram) Focal length of convex lens increases when immersed in water	$\begin{array}{\|l\|} \hline 2 \\ 1 \\ 1+1 \\ 1 \\ 2 \\ \\ 1 \\ 1 \\ \hline \end{array}$
A	33	(a) Biot savart law statement and mathematical expression (b) Derivation of magnetic field due to current carrying circular coil along the axis	2

		Diagram Derivation OR (a) Expression for force on current carrying conductor placed in magnetic field - Diagram Derivation The force acting on the current carrying wire in uniform magnetic field $\begin{aligned} & \mathrm{F}=\text { Bil } \sin \theta \\ & \mathrm{F}=\mathrm{Bil} \quad\left(\because \theta=90^{\circ}\right) \end{aligned}$ Weight of the wire $\mathrm{w}=\mathrm{mg}=0.2 \times 9.8 \mathrm{~N}$ In the position of suspension $\mathrm{Bil}=\mathrm{mg}$ $B=\frac{\mathrm{mg}}{\mathrm{il}}=\frac{0.2 \times 9.8}{2 \times 15}=0.65 \mathrm{~T}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & \\ & 1 \\ & 1 \\ & 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
A	34	(i) Statement faraday's laws First law Second law (ii) weber, scalar (iii) clockwise OR $\begin{gathered} e=-\frac{d \phi}{d t} \\ \mathrm{e}=1.6 \times 10^{-3} \mathrm{~V} \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \\ & 2 \\ & \\ & 1 \\ & 1 \end{aligned}$
A	35	(i) Two Conditions for TIR (ii) Two uses of optical fibre (iii) definition of critical angle and relation between i_{c} and n_{21} OR From $\sin C=\frac{1}{\mu}=\frac{1}{\sqrt{2}}, C=45^{\circ}$	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1+1 \\ & 1+1 \end{aligned}$
B	1	A	
B	2	C	
B	3	A	
B	4	A	
B	5	C	
B	6	D	
B	7	A	
B	8	B	
B	9	A	

B	10	A					
B	11	A					
B	12	B					
B	13	A					
B	14	D					
B	15	(i)					
B	16	A					
B	17	C					
B	18	A					
B	19	(a) equipotential surface in z direction -diagram showing equal spacing between two consecutive equipotential surface otherwise reduce $1 / 2$ mark (b) two different equipotential surface have different electric potential, so if they intersect then the point of intersection will have two different potentials at the same point which is not possible.		$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \end{aligned}$			
B	20	(a) (b)	An electrostatic field line is a continuous curve because a charge experiences a continuous force when traced in an electrostatic field. The field line cannot have sudden breaks because the charge moves continuously and does not jump from one point to the other. OR $\begin{aligned} & \text { Since } \times=1 \mathrm{~m} \\ & \varphi_{\mathrm{L}}=-50 \times 1 \times 25 \times 10^{-4} \\ & =-1250 \times 10^{-4} \\ & =-0.125 \mathrm{Nm}^{2} \mathrm{C}^{-1} \end{aligned}$ Flux through the right surface. $\begin{aligned} & \varphi_{R}=\mid E\\|S\\| \\ & \text { Since } \times=2 \mathrm{~m} \\ & \begin{aligned} \varphi_{R} & =50 \times 2 \times \\| \mathrm{s} \mid \\ & =50 \times 2 \times 25 \times 10^{-4} \\ & =2500 \times 10^{-4} \\ & =0.250 \mathrm{Nm}^{2} \mathrm{C}^{-1} \end{aligned} \end{aligned}$ Now, flux through the cylinder $\begin{aligned} \varphi_{\text {Ace }}=P_{R} & +\varphi_{\mathrm{L}} \\ & -0.250-0.125 \\ & =0.125 \mathrm{Nm}^{2} \mathrm{C}^{-8} \end{aligned}$				

B	21	Relation- $\mathrm{I}=\mathrm{nEA} \mathrm{v}_{\mathrm{d}}$ Derivation (If diagram is given give $1 / 2$ mark)	2
B	22	Magnetic field induction at O due to current loop 1 is $B_{1}=\frac{\mu_{0} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}}$ acting towards left. Magnetic field induction at O due to current loop 2 is $B_{2}=\frac{\mu_{0} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}}$ acting vertically upwards. Resultant magnetic field induction at O will be $\begin{aligned} & B=\sqrt{B_{1}^{2}+B_{2}^{2}}=\sqrt{2} B_{1}\left(\because B_{1}=B_{2}\right) \\ & =\sqrt{2} \times \frac{\mu_{0} I R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}} \\ & =\frac{\mu_{0} I R^{2}}{\sqrt{x^{2}+R^{2}}} \end{aligned}$ Direction -45^{0}	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
B	23	(i) (a) dia magnetic (b) ferromagnetic (ii) negative susceptibility for diamagnetic and high and positive for ferromagnetic substance	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+2 / 2 \end{aligned}$
B	24	(a) Definition of self-inductance in terms of induced emf	$11 / 2$
B	25		1+1
B	26	the expression for the electric field at a point due to an infinitely long thin, uniformly charged straight wire of linear charge density $\lambda \mathrm{C} / \mathrm{m}$	

		[Ans. Charge enclosed by Gaussian surface, $q=\lambda l$ At the part I and II of Gaussian surface \vec{E} and \hat{n} are \perp, so flux through surfaces I and II is zero. By Gauss's law, $\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}$ $\begin{array}{lr} \Rightarrow & \oint E d s \cos 0=\frac{q}{\varepsilon_{0}} \\ \Rightarrow & E \oint d s=\frac{q}{\varepsilon_{0}} \\ \Rightarrow & E(2 \pi r l)=\frac{\lambda l}{\epsilon_{0}} \\ \Rightarrow & E=\frac{\lambda}{2 \pi \varepsilon_{0} r} \end{array}$	1 for diagram 2 for derivation
B	27	(a) the capacitance increases as the dielectric constant $\mathrm{K}>1$. (b) Electric field $\mathrm{E}=\mathrm{V} / \mathrm{d}$, As V decreases and d remains the same, electric field also decreases. (c) Energy stored in a capacitor $\mathrm{U}=\mathrm{Q}^{2} / 2 \mathrm{C}, ~ \mathrm{As} \mathrm{Q}$ is constant and C increases, U decreases.	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
B	28	(a) expression for resistivity of a conductor in terms of number density of free electrons and relaxation time On the basis of electron drift, derive an expression for resistivity of a conductor in terms of number density of free electrons and relaxation time. Let a potential difference V is applied across the ends of a conductor as shown. Electric field produced, $E=\frac{V}{l}$ $\begin{align*} & \Rightarrow \quad v_{d}=\frac{e E}{m l} \tau=\frac{e V}{m l} \tau \\ & \Rightarrow \quad \mathrm{I}=n e A v_{d}=n e A\left(\frac{e V}{m l} \tau\right)=\frac{n e^{2} \tau}{m}\left(\frac{A}{l}\right) \mathrm{V} \\ & \Rightarrow \quad \frac{V}{l}=\frac{m}{n e^{2} \tau}\left(\frac{l}{A}\right) \tag{1} \end{align*}$ If the physical conditions of conductor such as temperature etc. remains constant then $\begin{align*} & \frac{m}{n e^{2} \tau}\left(\frac{l}{A}\right)=\text { constant }=R \quad-\cdots---(2) \tag{2}\\ \Rightarrow & \text { from (1) } \frac{V}{I}=R \quad \Rightarrow \quad V=I R \quad, \quad \text { Now, } R=\frac{\rho l}{A} \Rightarrow \text { from (2) } \rho=\frac{m}{n e^{2} \tau} \end{align*}$ (b) Factors on which resistivity depends OR Effective resistance, $R_{12}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$ $\mathrm{R}_{12}=1.2 \Omega$ resistance, R_{12} is in series 2.8Ω Total resistance $=1.2+2.8=4.0 \Omega$ Current, $\mathrm{I}=\frac{6}{4}=1.5 \mathrm{~A}$ Potential difference, $A B=1.5 \times 1.2=1.8 \mathrm{~V}$ Current through $2 \Omega=\frac{1.8}{2}=0.9 \mathrm{~A}$.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \\ & \\ & \\ & \\ & \\ & 1 / 2 \\ & 1 \\ & 1 \\ & 1 / 2 \\ & 1 \end{aligned}$
B	29	(a) microwave (b) IR (c) X ray OR (a) oscillating charge produces em wave - explanation (b) sketch of em wave propagating in +x direction If any representation in diagram is missing, reduce $1 / 2$ marks	$\begin{gathered} 1+1+1 \\ \\ 1 / 2+1 \\ 1^{1 / 2} \end{gathered}$
B	30	Refractive index of Prism Ray diagram Derivation	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
B	31	(a) Biot savart law statement and mathematical expression (b) Derivation of magnetic field due to current carrying circular coil along the axis Diagram Derivation	$\begin{array}{\|l\|} \hline 1+1 \\ 1 \\ 2 \\ \hline \end{array}$

		OR (a) expression for force on current carrying conductor- derivation and figure Diagram Derivation The force acting on the current carrying wire in uniform magnetic field $\begin{aligned} & F=\text { Bil } \sin \theta \\ & F=\text { Bil } \quad\left(\because \theta=90^{\circ}\right) \end{aligned}$ Weight of the wire $\mathrm{w}=\mathrm{mg}=0.2 \times 9.8 \mathrm{~N}$ In the position of suspension $\mathrm{Bil}=\mathrm{mg}$ $\mathrm{B}=\frac{\mathrm{mg}}{\mathrm{il}}=\frac{0.2 \times 9.8}{2 \times 15}=0.65 \mathrm{~T}$	$\begin{aligned} & 1 \\ & 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
B	32	(a) figure of step up transformer Principle Working of transformer (b) Any two energy loss in transformer (c) No. Energy is conserved with the reason (a) Diagram of ac generator Principle (b) Derivation of expression $e=e_{0} \sin \omega t$ (c) No, MCG can't measure ac with Reason	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1 \\ & \\ & 2 \\ & 1 / 2+1 / 2 \end{aligned}$
B	33	(a) ray diagram - astronomical telescope in normal adjust Magnifying power definition (b) (b) 0.5 D (large focal length) and 4 D or 10 D (small focal length) OR Refraction through curved surface - ray diagram Derivation of proper relation Sign convention (if sign convention used in ray diagram, add 1 mark with Ray diagram) Focal length of convex lens increases when immersed in water	$\begin{aligned} & \hline 2 \\ & 1 \\ & 1+1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
B	34	(i) Statement faraday's laws First law Second law (ii) weber, scalar (iii) clockwise $\begin{aligned} & e=-\frac{d \phi}{d t} \\ & e=1.6 \times 10^{-3} V \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \\ & 2 \\ & \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
B	35	(i) Two Conditions for TIR (ii) Two uses of optical fibre (iii) definition of critical angle and relation between i_{c} and n_{21} OR From $\sin C=\frac{1}{\mu}=\frac{1}{\sqrt{2}}, C=45^{\circ}$	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1+1 \\ & \\ & 1+1 \end{aligned}$

C	1	A	
C	2	C	
C	3	A	
C	4	B	
C	5	A	
C	6	A	
C	7	B	
C	8	B	
C	9	A	
C	10	A	
C	11	D	
C	12	D	
C	13	A	
C	14	A	
C	15	(i)	
C	16	A	
C	17	C	
C	18	A	
C	19	radius $r=\frac{m v}{q B}=\frac{p}{q B}$ radius $r \propto \frac{1}{q}$ $\frac{r_{1}}{r_{2}}=\frac{q_{2}}{q_{1}}=\frac{2}{1}$	$1 / 2$ 1

C	20	(a) (b)	An electrostatic field line is a continuous curve because a charge experiences a continuous force when traced in an electrostatic field. The field line cannot have sudden breaks because the charge moves continuously and does not jump from one point to the other. OR $\begin{aligned} & \text { Since } \times=1 \mathrm{~m} \\ & \varphi_{\mathrm{L}}=-50 \times 1 \times 25 \times 10^{-4} \\ & =-1250 \times 10^{-4} \\ & =-0.125 \mathrm{Nm}^{2} \mathrm{C}^{-1} \end{aligned}$ Flux through the right surface. $\begin{aligned} & \begin{aligned} \varphi_{R}= & \|E\| S \mid \\ \text { Since } & \times 2 \mathrm{~m} \\ \varphi_{R}= & 50 \times 2 \times\|\mathrm{S}\| \\ & =50 \times 2 \times 25 \times 10^{-4} \\ & =2500 \times 10^{-4} \\ & =0.250 \mathrm{Nm}^{2} \mathrm{C}^{-1} \end{aligned} \end{aligned}$ Now, flux through the cylinder $\begin{aligned} \varphi_{\text {Ace }}=\varphi_{\mathrm{R}} & +\varphi_{\mathrm{L}} \\ & =0.250-0.125 \\ & =0.125 \mathrm{Nm}^{2} \mathrm{C}^{-8} \end{aligned}$	1 1 $1 / 2$ $1 / 2$ 1
C	21	(i) (a) (ii) n subst	dia magnetic (b) ferromagnetic gative susceptibility for diamagnetic and high and positive for ferromagnetic ace	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
C	22	(a) eq two (b) t inter same	ipotential surface in z direction -diagram showing equal spacing between nsecutive equipotential surface otherwise reduce $1 / 2$ mark o different equipotential surface have different electric potential, so if they et then the point of intersection will have two different potentials at the point which is not possible.	$1 / 2+1 / 2$ 1
C	23	$\begin{gathered} \uparrow \\ x_{2} \\ \\ \hline \end{gathered}$		1+1
C	24	(a) d	inition of self-inductance in terms of induced emf	1

		(b)	$\begin{aligned} & \mathrm{e}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}} \\ & \mathrm{~L}=\frac{\mathrm{e}}{\frac{\mathrm{di}}{\mathrm{dt}}} \\ & =\frac{200}{\frac{5}{0.1}=4 \mathrm{H}} \end{aligned}$ Hence the self inductance of the coil is 4 H . OR Derivation for self-inductance of long solenoid Diagram Derivation	$1 / 2$ $1 / 2$ $1 / 2$ $11 / 2$
C	25	$\begin{gathered} \mathrm{I}= \\ \mathrm{De} \end{gathered}$	$A v_{d}$ ation (If diagram is given give $1 / 2$ mark)	2
C	26	(a) m (a) 0 (b) sk If an	rowave (b) IR (c) X ray OR cillating charge produces em wave - explanation tch of em wave propagating in $+x$ direction representation in diagram is missing, reduce $1 / 2$ marks	$\begin{aligned} & 1+1+1 \\ & \\ & 1 / 2+1 \\ & 11 / 2 \end{aligned}$
C	27	(a) R (b) E also (c) th	main same because source of charge disconnected ectric field $\mathrm{E}=\mathrm{V} / \mathrm{d}$, As V decreases and d remains the same, electric field creases. capacitance increases as the dielectric constant $\mathrm{K}>1$.	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
C	28	$\begin{array}{\|l\|} \hline \text { Refl } \\ \text { Any } \\ \hline \end{array}$	ing telescope - diagram o Advantages	$\begin{array}{\|l\|} \hline 2 \\ 1 / 2+1 / 2 \\ \hline \end{array}$
C	29	the e unifo [Ans. \Rightarrow \Rightarrow \Rightarrow \Rightarrow	pression for the electric field at a point due to an infinitely long thin, mly charged straight wire of linear charge density $\lambda \mathrm{C} / \mathrm{m}$ harge enclosed by Gaussian surface, $q=\lambda l$ e part I and II of Gaussian surface \vec{E} and \hat{n} 1 , so flux through surfaces I and II is zero. auss's law, $\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}$ $d s \cos 0=\frac{q}{\varepsilon_{0}}$ $E \oint d s=\frac{\boldsymbol{q}_{0}}{\varepsilon_{0}}$ $E(2 \pi r l)=\frac{\lambda l}{\epsilon_{0}}$ $\boldsymbol{E}=\frac{\lambda}{2 \pi \varepsilon_{0} r}$	1 for diagram 2 for derivation
C	30	a) ex elect On \Rightarrow (b) F	ession for resistivity of a conductor in terms of number density of free ns and relaxation time basis of electron drift, derive an expression for resistivity of a conductor in terms of number density of free ons and relaxation time. Let a potential difference V is applied across the ends of a conductor as shown. Electric field produced, $E=\frac{V}{l}$ $\begin{align*} & v_{d}=\frac{e E}{m l} \tau=\frac{e V}{m l} \tau \\ & \mathrm{I}=n e A v_{d}=n e A\left(\frac{e V}{m l} \tau\right)=\frac{n e^{2} \tau}{m}\left(\frac{A}{l}\right) \mathrm{V} \\ & \frac{V}{l}=\frac{m}{n e^{2} \tau}\left(\frac{l}{A}\right) \tag{1} \end{align*}$ he physical conditions of conductor such as temperature etc. remains constant then $\begin{align*} & \frac{1}{{ }^{2} \tau}\left(\frac{l}{A}\right)=\text { constant }=R \quad-\cdots---(2) \tag{2}\\ & \operatorname{om}(1) \frac{V}{I}=R \quad \Rightarrow \quad V=I R \quad, \quad \text { Now, } R=\frac{\rho l}{A} \quad \Rightarrow \text { from (2) } \rho=\frac{m}{n e^{2} \tau} \end{align*}$ tors on which resistivity depends	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$

		Effective resistance, $\mathrm{R}_{12}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6} \quad$ OR $\mathrm{R}_{12}=1.2 \Omega$ resistance, R_{12} is in series 2.8Ω Total resistance $=1.2+2.8=4.0 \Omega$ Current, $\mathrm{I}=\frac{6}{4}=1.5 \mathrm{~A}$ Potential difference, $\mathrm{AB}=1.5 \times 1.2=1.8 \mathrm{~V}$ Current through $2 \Omega=\frac{1.8}{2}=0.9 \mathrm{~A}$.	$\begin{aligned} & 1 / 2 \\ & 1 \\ & 1 / 2 \\ & 1 \end{aligned}$
C	31	(a) ray diagram - astronomical telescope in normal adjust Magnifying power definition (b) 0.5 D (large focal length) and 4 D or 10 D (small focal length) OR Refraction through curved surface - ray diagram Derivation of proper relation Sign convention (if sign convention used in ray diagram, add 1 mark with Ray diagram) Focal length of convex lens increases when immersed in water	$\begin{aligned} & \hline 2 \\ & 1 \\ & 1+1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$
C	32	(a) figure of step up transformer Principle Working of transformer (b) Any two energy loss in transformer (c) No. Energy is conserved with the reason (a) Diagram of ac generator Principle (b) Derivation of expression $e=e_{0} \sin \omega t$ (c) No, MCG can't measure ac with Reason	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1 \\ & \\ & 2 \\ & 1 / 2+1 / 2 \end{aligned}$
C	33	(a) Biot savart law statement and mathematical expression (b) Derivation of magnetic field due to current carrying circular coil along the axis Diagram Derivation OR (a) expression for force on current carrying conductor- derivation and figure Diagram Derivation (b) The force acting on the current carrying wire in uniform magnetic field $\begin{aligned} & \mathrm{F}=\mathrm{Bil} \sin \theta \\ & \mathrm{~F}=\mathrm{Bil} \quad\left(\because \theta=90^{\circ}\right) \end{aligned}$ Weight of the wire $\mathrm{w}=\mathrm{mg}=0.2 \times 9.8 \mathrm{~N}$ In the position of suspension $\mathrm{Bil}=\mathrm{mg}$ $\mathrm{B}=\frac{\mathrm{mg}}{\mathrm{il}}=\frac{0.2 \times 9.8}{2 \times 15}=0.65 \mathrm{~T}$	$\begin{aligned} & \hline+1 \\ & 1 \\ & 2 \\ & \\ & 1 \\ & 2 \\ & \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
C	34	(i) Statement faraday’s laws First law Second law (ii) weber, scalar	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$

		(iii) clockwise OR $e=-\frac{d \phi}{d t}$ $\mathrm{e}=1.6 \times 10^{-3} \mathrm{~V}$	2
C	$\mathbf{3 5}$	(i) Two Conditions for TIR (ii) Two uses of optical fibre (iii) definition of critical angle and relation between ic and n_{21} OR	
	From $\sin C=\frac{1}{\mu}=\frac{1}{\sqrt{2}}, C=45^{\circ}$	1	

